Application of fuzzy logic in detecting irregular heartbeat using ECG

Document Type : Original Article

Author

20.1001.1.27174409.1399.3.1.3.8/DOR

Abstract

An Electrocardiogram Is One Of The Most Important Vital Signals Used By Physicians For Diagnostic Purposes. These Signals Provide Key Information About The Heart's Electrical Activity, And Recording And Displaying Them Over Time Will Lead To Changes In Heart Activity. Nowadays, The Classification Of These Signals Is Widely Used In Medical Science And Disease Diagnosis, And The Use Of Automated Methods Of Their Analysis Using Computer-Based Techniques, Automatic Analysis Of The Shape And Wave Pattern Of Heart Signals Can Help Physicians Diagnose The Type Of Disease. Various Techniques For Classifying Heart Disease, Known As Arrhythmias, Have Been Invented And Discovered. This Article Aims To Investigate The Development Of Different Cardiac Arrhythmia Classification Techniques Based On Fuzzy Logic Along With A Discussion Of Accepted Techniques.

Keywords


[1] Acharya, R., Suri, J. S., Spasn, J.A.E., Krishnan, 8. M. (2007). Advances in Cardiac Signal Processing. Springer Bertin Heidelberg New York, 13, 327-338.
 
[2] Anuredha, B., Reddy, V. C. V., (2008). ANN for classification of cardiac arthythmias, ARPN Journal of Engineering and Applied Sciences.
 
 
 
[3] Asl, B. M. Z., Setarehdan S. K., (2006). Neural Network Based Arrhythmia Classification Using Heart Rate Variability Signal. Proceedings of the 2nd International Symposium on Biomedical Engineering, Bangkok, Thailand, 149-162.
 
[4] Balaskas, K., Siozios, K. (2019). ECG Analysis and Heartbeat Classification Based on Shallow Neural Networks,8th International Conference on Modern Circuits and Systems Technologies (MOCAST), 1-4.
 
[5] Barill, T. (2003). The Six Second ECG: A Practical Guidebook to Basic ECG Interpretation. nursecom.
 
[6] Bayati, H., Dowlatshahi, M. B., Paniri, M. (2020). MLPSO: A Filter Multi-label Feature Selection Based on Particle Swarm Optimization. 25th International Computer Conference, Computer Society of Iran (CSICC), 1-6.
 
[7] Benitez, D., Gaydecki, P. A., Zaidib, A., Fitzpatrick, A.P. (2001). The use of the Hilbert transform in ECG signal analysis. Computers in Biology and Medicine, 31, 399-406.
 
[8] Bezdek, J.C., Pattern Recognition with Fuzzy Objective Function Algorithms. 2013.
 
[9] Bogdanova, I., Rinc ́, F., Atienza, D. (2012). A Multi-lead ECG Classification Based On Random Projection Features. IEEE Xplore, 2012, 625-628.
 
[10] Cai, D., He, X., Zhang, W.V., Han, J. (2007). Regularized locality preserving indexing via spectral regression, sixteenth ACM conference on Conference on information and knowledge management, ACM, 741–750.
 
[11] Channappa B., Satish T., Hamde, Laxman M., Waghmare (2011). ECG Acquisition and Analysis System for Diagnosis of Heart Diseases. Sensors & Transducers Journal, 133, 18-29.
 
[12] Chazal, P.De., O'Dwyer, M., Reilly, R.B. (2004) Automatic Classification of Heartbeats Using ECG Morphology and Heartbeat Interval Features. IEEE Transaction on Biomedical Engineering, 51, 1196- 1206.
 
[13] Cortes, C., Vapnik, V. (1995). Support-vector networks .Machine Learning, 20, 273-2970.
 
[14] Dowlatshahi, M.B., Derhami, V., Nezamabadi-pour, H. (2018). A Novel Three-Stage Filter-Wrapper Framework for miRNA Subset Selection in Cancer Classification. Informatics, 5, 13.
 
[15] Dowlatshahi, M.B., Derhami, V., Nezamabadi-pour, H. (2019). Fuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization. Iranian Journal of Fuzzy Systems.
 
[16] Dowlatshahi, M.B., Derhami, V., Nezamabadi-pour, V. (2017). Ensemble of Filter-Based Rankers to Guide an Epsilon-Greedy Swarm Optimizer for High-Dimensional Feature Subset Selection. Information, 8, 152.
 
[17] Dowlatshahi, M.B., Nezamabadi-pour, H. (2014). GGSA: A Grouping Gravitational Search Algorithm for data clustering. SienceDirect, 36, 114-121.
 
[18] Duin, R.P.W., Loog, M. (2004). Linear dimensionality reduction via a heteroscedastic extension of lda: the chernoff criterion IEEE Trans, 26, 732–739.
 
[19] Dunn, J. C. (1974) A Fuzzy Relative of the ISODATA Process and its Use in Detecting Compact Well Separated Clusters. Journal of Cybernetics, 3, 32–57.
 
[20] Farhan, A., Wei, CL., Ahmed, MT. (2018). A Qualitative Overview of Fuzzy Logic in ECG Arrhythmia Classification, Semantic Scholar, 5, 232-239.
 
[21] Gharieb, R.R., Massoud, M., Nady, S., Moness, M. (2016) Fuzzy c-means in features space of Teager-Kaiser Energy of continuous wavelet coefficients for detection of PVC beats in ECG. 2016 8th Cairo International Biomedical Engineering Conference (CIBEC). Cairo, 72-75.
 
[22] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE (2003). PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation, 101, 215-220.
 
[23] Hashemi, A., Dowlatshahi M. B., (2020). MLCR: A Fast Multi-label Feature Selection Method Based on K-means and L2-norm. 25th International Computer Conference, Computer Society of Iran (CSICC), 1-7.
 
[24] Hashemi, A., Dowlatshahi, M.B., Nezamabadi-pour, H., (2019). MGFS: A multi-label graph-based feature selection algorithm via PageRank centrality. ScienceDirect, 142.
 
[25] Homaeinezhad, M.R., Tavakkoli, E., Ghaffari, A. (2011). Discrete Wavelet-based Fuzzy Network Architecture for ECG RhythmType Recognition: Feature Extraction and Clustering-Oriented Tuning of Fuzzy Inference System. International Journal of Signal Processing, Image Processing and Pattern Recognition, 4, 107-130.
 
[26] Illustration from Anatomy & Physiology, Connexions Web Site, 2013,
http://cnx.org/content/col11496/1.6/.
 
[27] Inan, O.T., Giovangrandi, L., Kovacs. G. T. A. (2006). Robust neural network-based classification of premature ventricular contractions using wavelet transform and timing interval features.IEEE Transaction on Biomedical Engineering, 53, 2507-2515.
 
[28] Ince, T., Kiranyaz, S., Gabbouj, M. (2009). A Generic and Robust System for Automated Patient-specific Classification of Electrocardiogram Signals. IEEE Transactions on Biomedical Engineering, 56, 1415-1426.
 
[29] Introductory Guide to Identifying ECG Irregularities,DailyCareBioMedical Inc.2016
 
[30] Jalal A., Nasiri, Naghibzadeh, M., Yazdi, H.S., Naghibzadeh, B. (2009). ECG Arrhythmia Classification with Support Vector Machines and Genetic Algorithm. Third UKSim European Symposium on Computer Modeling and Simulation, 187-192.
 
[31] Jeppesen, J., Beniczky, S., Johansen, P., Sidenius, P., Frederiksen, A.F. (2017). Fully automated R-peak detection algorithm for patients with epilepsy: First step towards protable seizure detector. Elsevier, 128, 9, e282.
 
[32] Karpagachelvi, S., Arthanari, M., Sivakumar, M. (2011). Classification of ECG Signals Using Extreme Learning Machine. Computer and Information Science, 4, 42-52.
 
[33] Kohli, N., Verma, N.K., Roy. A. (2010) SVM Based Methods for Arrhythmia Classification in ECG.International Conference on Computer & Communication Technology, 486490.
 
[34] LEE, C.C. (1990). Fuzzy Logic Controller, Fuzzy Logic in Control Systems. IEEE, 20, 404-418.
 
[35] Lagerholm, M., Peterson, C., Braccini, G., Edenbrandt, L., Sörnmo, L. (2000). Clustering ECG Complexes Using Hermite Functions and Selforganizing Maps. IEEE Transaction on Biomedical Engineering, 47, 838-848.
 
[36] Laguna P., Mark R.G., Goldberger A.L., Moody G.B. (1997). A Database for Evaluation of Algorithms for Measurement of QT and Other Waveform Intervals in the ECG. Computers in Cardiology, 24, 673-676.
 
[37] Laitala, J., Jiang, M., Syrjälä, E., Naeini, E.K., Airola A., Rahmani, A.M., Dutt, N.D.D., Liljeberg, P. (2020). Robust ECG R-peak detection using LSTM. 35th Annual ACM Symposium on Applied Computing Association for Computing Machinery, New York, NY, USA, 1104-1111.
 
[38] Lei, W.K., Li, B.N., Dong, M.C., Vai, M.I. (2007). AFC-ECG: An adaptive fuzzy ECG classifier. Springer, 39, 189-199.
 
[39] Li, H., Liang, H., Miao, C. et al (2016). Novel ECG Signal Classification Based on KICA Nonlinear Feature Extraction. Circuits Syst Signal Process 35, 1187–1197.
 
[40] Liu, T., Si, Y., Wen, D., Zang, M., Lang, L. (2016). Dictionary learning for VQ feature extraction in ECG beats classification. Expert Systems with Applications, 53, 129-137.
 
[41] MENDEL, J. M. (1995) Fuzzy Logic Systems for Engineering: A tutorial. IEEE, 83, 345-377.
 
[42] Mahesh, V., Kandaswamy, A., Vimal, C., Sathish, B. (2009). ECG arrhythmia classification based on logistic model tree. J. Biomedical Science and Engineering, 2, 405-411.
 
[43] Martis, R.J., Chakraborty, C., Ray, A.K. (2009). A two-stage mechanism for registration and classification of ECG using Gaussian mixture model. Pattern Recognition, 42, 2979-2988.
 
[44] Mehta, S.S., Lingayat, N.S. (2007). Support Vector Machine for Cardiac Beat Detection in Single Lead Electrocardiogram. IAENG, International Journal of Applied Mathematics, 1630-1635.
 
[45] Merone, M., Soda, P., Sansone, M., Sansone, C. (2017). ECG databases for biometric systems: a systematic review. Expert Systems, 67, 189–202.
 
[46] Moody, G.B., Mark, R.G. (2001). The impact of the MIT-BIH Arrhythmia Database. IEE, 20, 45-50.
 
[47] Murugan, S., Radhakrishnan, S. (2010). Improving Ischemic Beat Classification Using Fuzzy-Genetic Based PCA And ICA. (IJCSE) International Journal on Computer Science and Engineering. 02, 05, 1532-1538.
 
[48] Naghsh-Nilchi, A. R. Mohammadi A. R. K. (2009). Cardiac Arrhythmias Classification Method Based on MUSIC, Morphological Descriptors, and Neural Network. EURASIP Journal on Advances in Signal Processing, 2008.
 
[49] Nazmy, T.M., El-Messiry, H., Al-Bokhity, B. (2010). Adaptive Neuro-Fuzzy Inference System for classification of ECG signals. The 7th International Conference on Informatics and Systems (INFOS), 1-6.
 
[50] Nolle, F.M., Badura, F.K., Catlett, J.M., Bowser, R.W., Sketch, M.H. (1986). CREI-GARD, a new concept in computerized arrhythmia monitoring systems. Computers in Cardiology, 13, 515-518.
 
[51] Nunes, J.C., Nait-Ali, A. (2005) Hilbert transform-based ECG modeling. Biomedical Engineering, 39, 133-137.
 
[52] Owis, M., Abou-Zied, A., Youssef, A.B., Kadah, Y. (2001). Robust feature extraction from ECG signals based on nonlinear dynamical modeling. 23rd Annual International Conference IEEE Engineering in Medicine and Biology Society, 2 ,1585-1588.
 
[53] Paniri, M., Dowlatshahi, M.B., Nezamabadi-pour, H. (2019). MLACO: A multi-label feature selection algorithm based on ant colony optimization. ScienceDirect, 192.
 
[54] Roopa, C.K., Harish, B.S, (2018). Interpretation of ECG using modified Intuitionistic fuzzy C-MEANS clustering for arrhythmia data. ICTACT, 09.
 
[55] Roopa, C.K., Harish, B.S., Aruna Kumar S.V., (2018). A Novel Method of Clustering ECG Arrhythmia data using Robust Spatial Kernel Fuzzy C-Means. SienceDirect, 143, 133-140.
 
[56] Sahoo, S., Dash, M., Behera, S., Sabut, S. (2020). Machine Learning Approach to Detect Cardiac Arrhythmias in ECG Signals: A Survey – IRBM.
 
[57] Sahoo, S., Kanungo, B., Behera, S., Sabut, S. (2017). Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities. Measurement, 108, 55-66.
 
[58] Sakhare, P.B., Ghongade, R. (2015). An Approach for ECG Beats Classification using Adaptive Neuro Fuzzy Inference System. Annual IEEE India Conference (INDICON), 1-6.
 
[59] Sakhare, P.B., Ghongade, R. (2015). An approach for ECG beats classification using Adaptive Neuro Fuzzy Inference System. Annual IEEE India Conference (INDICON). New Delhi, 1-6.
 
[60] Shyu, L.Y., Wu, W.H., Hu, H.U. (2004). Using wavelet transform and fuzzy neural network for VPC detection from the holter ECG. IEEE Transactions on Biomedical Engineering. 51, 7, 1269-1273.
 
[61] Song, M.H., Lee, J., Cho, S.P., Lee, K.J., Yoo, S.K. (2005). Support Vector Machine Based Arrhythmia Classification Using Reduced Features. International Journal of Control, Automation and Systems, 3, 571-579.
 
[62] Spach, M.S., Kootsey, J.M. (1983) The nature of electrical propagation in cardiac muscle Am. J. Physiol. Heart Circ. Physiol, 244 (H),3-22.
 
[63] Taddei, A., Distante, G., Emdin, M., Pisani, P., Moody, G.B., Zeelenberg, C., Marchesi, C. (1992). The European ST-T Database: standard for evaluating systems for the analysis of ST-T changes in ambulatory electrocardiography. European Heart Journal, 13, 1164-1172.
 
[64] Venkatesan, C., Karthigaikumar, P., Paul, A., Satheeskumaran, S., Kumar, R (2018). ECG Signal Preprocessing and SVM Classifier-Based Abnormality Detection in Remote Healthcare Applications. IEEE. 6, 9767-9773.
 
[65] Venkatesan, C., Karthigaikumar, P., Varatharajan, R (2018). A novel LMS algorithm for ECG signal preprocessing and KNN classifier based abnormality detection. Multimed Tools Appl, 77, 10365–10374.
 
[66] Warmerdam, G. J. J., Vullings, R., Schmitt, L., Van Laar, J. O. E. H., Bergmans, J. W. M. (2018). Hierarchical Probabilistic Framework for Fetal R-Peak Detection, Using ECG Waveform and Heart Rate Information. IEEE Transactions on Signal Processing, 66, 16, 4388-4397.
 
[67] Yong, L.S., Yong, A.D., Hae, S.M., Joung, L.K. (2011). The Classification of Electrocardiograph Arrhythmia Patterns using Fuzzy Support Vector Machines, International Journal of Fuzzy Logic and Intelligent Systems,11, 204-210.
 
[68] Zadeh, L.A. (1998). Fuzzy Logic University of California. IEEE, 4, 83-93.
 
[69] Zhang, Y., Zhang, Y., Lo, B., Xu, W. (2019). Wearable ECG signal processing for automated cardiac arrhythmia classification using CFASE-based feature selection. Expert Systems, e12432.
 
[70] Özcan, N.O., Gurgen, F. (2010). Fuzzy Support Vector Machines for ECG Arrhythmia Detection. 20th International Conference on Pattern Recognition, 2973-2976.