Comparison of Takuti-Titan and Atanasov Intuitive Fuzzy Regions

Document Type : Original Article

20.1001.1.27174409.1399.3.2.5.2/DOR

Abstract

Two distinct but identical types of Atanasov's set theory and intuitive fuzzy logic and Takotti-Titanian set theory and intuitive fuzzy logic are introduced. Atanasov believes that he has turned the theory of sets and fuzzy logic into the theory of sets and intuitive logic by defining two functions of membership (correctness) and non-membership (correctness), the sum of which does not necessarily become one. They have developed two values ​​into set theory and logic that can infer fuzzy data. Atanasov's condition on the set of functions reinforces the idea of ​​eliminating the principle of the exclusion of the third clause, and Takotti and Titan rely on theorems that construct intuitive theories using a set of valuations that is a perfect Heat algebra. In this paper, these two types of intuitive fuzzy logic are reviewed in terms of some properties, and their relationship with intuitive, fuzzy and classical regions. The focus of this study is on three important issues: the principle of double contradiction, generalized regions, and the philosophy of intuitionism. Then, from the terminological and content point of view, they compare the properties of fuzzy logic and the properties of intuitive logic, and in the end, the non-intuition of Athanasov's theory and the non-fuzzy nature of Takoti-Titanian theory are concluded.

Keywords


[1] اردشیر، م. (1376) شهودگرایی براوئر، نشر ریاضی، شماره17(1)، صص 5 تا 19.
 
[2] فان آتن، م. فلسفه براوئر،  ترجمه اردشیر، م. (1387) هرمس، تهران.
 
[3] نبوی، ل، حجتی، م، علایی‌نژاد، ح. (1391) مبانی فلسفی منطق شهودی، متافیزیک(مجله دانشکده ادبیات و علوم انسانی اصفهان)، شماره 48(14)، صص 51 تا 64.
 
[4] K. Atanassov. (1986) Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20:1, 87-96.
 
[5] K. Atanassov. (2012) On Intuitionistic Fuzzy Sets Theory, Department of Bioinformatics and Mathematical Modelling, Bulgarian Academy of Sciences.
 
[6] L. Brouwer. (1975) Collected Works, volume 1, North-Holland, Amsterdam.
 
[7] A. Ciabattoni. (2005) A proof-theoretical investigation of global intuitionistic (fuzzy) logic, Archive for Mathematical Logic, 44 (4), 435-457.
 
[8] D. Dalen. (1988) Intuitionistic Logic, In Handbook of philosophical logic, volume 5, 2nd edition, Kluwer Academic Publishers, U.S.A. and Canada, 1-115.
 
[9] D. Dubois, S. Gottwald, P. Hajek, J. Kacprzyk, H. Prade. (2005) Terminological difficulties in fuzzy set theory—The case of “Intuitionistic Fuzzy Sets”, Fuzzy Sets and Systems, 156 (3), 485-491.
 
[10] M. Dummett. (1975) the Philosophical Basis of Intuitionistic Logic, Studyies in Logic and the Foundation of Mathematics, 80 (1), 5-40.
 
[11] K. Godel. (2007) Godel’s Work in Intuitionistic Logic and Arithmetic, In Godel’s Mathematical Work, chapter 5, Stanford Encyclopedia of Philosophy, Stanford.
 
[12] G. Gentzen. (1955) Recherches Sur La Deducation Logique, Presses universitaires de France, Paris.
 
[13] R. Grayson. (1975) A sheaf approach to models of set theory, M.Sc Thesis, Oxford.
 
[14] A. Heyting. (1975) Intuitionism, an introduction, 3nd edition, North-Holland, Amsterdam.
 
[15] S. Kripke. (1963) Semantical Analysis of Intuitionistic Logic, In Formal Systems and Recursive Functions: Proceedings of the Eighth Logic Colloquium, NorthHolland, Oxford, 92-130.
 
[16] G. Mints. (2000) A short introduction to intuitionistic logic, 6nd edition, Kluwer Academic / Plenum Publisher, New York.
 
[17] G. Priest. (2001) An introduction to non-classical logic, 2nd Edition, Cambridge University Press, Cambridge.
 
[18] G. Takeuti, S. Titani. (1981) Heyting valued universes of intuitionistic set theory, In Logic Symposia Hakone, Springer, Berlin, 189-306.
 
[19] G. Takeuti, S. Titani. (1984) Intuitionistic fuzzy logic and intuitionistic fuzzy set theory, Journal of Symbolic Logic, 49 (3), 851-866.
 
[20] G. Takeuti, S. Titani. (1987) Globalization of intuitionistic set theory, Annals of Pure and Applied Logic, 33 (1), 195-211.
 
[21] L. Zadeh. (1965) Fuzzy sets, Information and Control, 8 (3), 338-353.