Calculate the Fuzzy Critical Path of the Project Network with Linguistic Variables

Author

20.1001.1.27174409.1399.3.2.11.8/DOR

Abstract

Proper project scheduling is a prerequisite for project success. In traditional models, the time of activities is considered as definite or probable numbers. In the real world, it is impossible to calculate the exact time of each activity and it is always faced with uncertainty. In this article, the duration of each activity is presented by experts as linguistic variables and using linguistic theory, these linguistic variables are displayed in the form of fuzzy numbers. Estimating the project completion time and determining the critical project path will be possible by solving a fuzzy linear programming model. In this paper, using fuzzy number ranking, the FCPM algorithm to solve the model is introduced. At no point in this algorithm is "fuzzy" "fuzzy numbers" performed and the project completion time is obtained as a trapezoidal fuzzy number. Finally, the performance of the proposed algorithm is shown with a practical example. Proper project scheduling is a prerequisite for project success. In traditional models, the time of activities is considered as definite or probable numbers. In the real world, it is impossible to calculate the exact time of each activity and there is always uncertainty. In this paper, the duration of each activity is presented by experts as linguistic variables and using linguistic theory, these linguistic variables are displayed in the form of fuzzy numbers.

Keywords


[1] دارابی گلستان، ف،  قوامی ریابی، س. ر، هزارخانی، ا، خالوکاکایی، ر، سکاکی، س.ح،  و هارونی، ه. (1395). ساختار مدیریت پروژه اکتشافی در تفکیک آنومالی با روش­ های هندسه فضایی در قالب روش شبکه­ ایGERT  مطالعه موردی نهشته  Cu-Au پورفیری دالی شمالی. نشریه روش ­های تحلیلی و عددی در مهندسی معدن. شماره11، ص1-10.
 
[2] فاطمی دخت، ح، و کوچکی رفسنجانی، م. (1398). طراحی یک سیستم عصبی فازی تطبیقی به عنوان یک ابزار تشخیصی بیماری دیابت. سیستم­ های فازی و کاربردها. سال دوم. شماره دوم. ص205-222.
 
[3] کاظمی، اب. و فخوری، پ. (1391). ارائه یک سیستم کنترل فازی برای تخمین زمان ختم پروژه در شبکه­ های گرت. نشریه بین المللی مهندسی صنایع و مدیریت تولید. شماره2. جلد 23.
 
[4] نوری، س، و یعقوبی، س. (1391). تعیین موعد مقرر تحویل پروژه در شبکه پرت پویا با چندین خدمت دهنده. نشریه بین المللی مهندسی صنایع و مدیریت تولید. شماره4. جلد23. ص472-484.
 
[5] Balin, A., Demirel, H., Celik, E., Alarcin, F. (2018). A fuzzy dematel model proposal for the cause and effect of the fault occurring in the auxiliary systems of the ships’ main engine.
 
[6] Chanas, S., Zieliński, P. (2001). Critical path analysis in the network with fuzzy activity times. Fuzzy sets and systems, 122(2), 195-204.
 
[7] Chen, S. P., Hsueh, Y. J. (2008). A simple approach to fuzzy critical path analysis in project networks. Applied Mathematical Modelling, 32(7), 1289-1297.
 
[8] Dubois, D., Fargier, H., Galvagnon, V. (2003). On latest starting times and floats in activity networks with ill-known durations. European Journal of Operational Research, 147(2), 266-280.
 
[9] Fan, L., Meng, S., Liu, X., Liang, Y. (2016). Improved CTT-SP algorithm with critical path method for massive data storage in scientific workflow systems. International Journal of Pattern Recognition and Artificial Intelligence, 30(08), 1659023.
 
[10] Fortemps, P., Roubens, M. (1996). Ranking and defuzzification methods based on area compensation. Fuzzy sets and systems, 82(3), 319-330.
 
[11] Gavareshki, M. K. (2004, October). New fuzzy GERT method for research projects scheduling. In 2004 IEEE International Engineering Management Conference (IEEE Cat. No. 04CH37574) (Vol. 2, pp. 820-824). IEEE.
 
[12] Hatefi, S. M., Tamošaitienė, J. (2018). Construction projects assessment based on the sustainable development criteria by an integrated fuzzy AHP and improved GRA model. Sustainability, 10(4), 991.
 
[13] Lim, C. S., Mohamed, M. Z. (1999). Criteria of project success: an exploratory re-examination. International journal of project management, 17(4), 243-248.
 
[14] Lin, F. T., Yao, J. S. (2003). Fuzzy critical path method based on signed-distance ranking and statistical confidence-interval estimates. The journal of supercomputing, 24(3), 305-325.
 
[15] Modarres, M., Sadi-Nezhad, S. (2001). Ranking fuzzy numbers by preference ratio. Fuzzy sets and Systems, 118(3), 429-436.
 
[16] Rosenfeld,Y.(2014). Root -cause analysis of construction - cost overruns. Journal of Construction Engineering and Management. 140(1), Article number04013039.
 
[17] Shahsavari Pour, N., Modarres, M., Aryanejad, M., Moghadam, R. T. (2010). The discrete time-cost-quality trade-off problem using a novel hybrid genetic algorithm. Applied Mathematical Sciences, 4(42), 2081-2094.
 
[18] Srivannaboon, S., Milosevic, D. Z. (2006). A two-way influence between business strategy and project management. International journal of project management, 24(6), 493-505.
 
[19] Tseng, P. H., Cullinane, K. (2018). Key criteria influencing the choice of Arctic shipping: a fuzzy analytic hierarchy process model. Maritime Policy Management, 45(4), 422-438.
 
[20] Wang, C. N., Yang, G. K., Hung, K. C., Chang, K. H., Chu, P. (2011). Evaluating the manufacturing capability of a lithographic area by using a novel vague GERT. Expert Systems with Applications, 38(1), 923-932.
 
[21] Xue, J., Van Gelder, P. H. A. J. M., Reniers, G., Papadimitriou, E., Wu, C. (2019). Multi-attribute decision-making method for prioritizing maritime traffic safety influencing factors of autonomous ships’ maneuvering decisions using grey and fuzzy theories. Safety Science, 120, 323–340. doi:10.1016/j.ssci.2019.07.019.
 
[22] Yang, H., Zhu, Z., Li, C., Li, R. (2019). A novel combined forecasting system for air pollutants concentration based on fuzzy theory and optimization of aggregation weight. Applied Soft Computing, 105972. doi:10.1016/j.asoc.2019.105972.
 
[23] Zieliński, P. (2005). On computing the latest starting times and floats of activities in a network with imprecise durations. Fuzzy sets and Systems, 150(1), 53-76.