Neural networks in analyzing fuzzy information of OCT

Document Type : Original Article

Authors

1 Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Ahvaz 61355-83151, Iran

2 Faculty of Mathematical Sciences and Computer, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Abstract

In this regard, in the framework of deep learning and based on inaccurate information obtained from images of retinal layers, an end-to-end network has been trained to analyze and segment retinal layers. The result of this study is the introduction of a kit that can be installed on smartphones, which can be used to easily and simply monitor users' vision.
The input of this structure is OCT images of the eye, without the need to extract hand-crafted features as input from the image, and its output is accurate spatial information of the retinal layers. The time required for each scan of OCT input images in this kit is about 10ms, which makes it possible to use such kits in a variety of smartphones easily. This kit, which assesses the health of ocular arteries, is inexpensive and can be used for remote locations or people who are not able to visit specialized eye centers or need frequent and continuous monitoring of their eye health. The ranking results presented in the present article show that the proposed structure has an acceptable performance and is very close to the average opinions of the group of specialist ophthalmologists. The results of evaluations and comparisons are made within the framework of multi-criteria decision-making approach. In order to extract the results in this framework, the TOPSIS algorithm is used in which the weights of the indicators are determined based on the entropy size.

Keywords


[1] چاچی، ج.، کاظمی‌فرد، ا. و فهیمی، ح. (1400). رهیافت تصمیم‌گیری‌های چند معیاره در ارزیابی نیکویی برازش مدل‌های آماری، سیستم‌های فازی و کاربردها،  دوره 4، شماره 1، ص ص 247-267.
 
[2] کاظمی‌فرد، ا. (1399). یک تعمیم از مدل تصمیم‌گیری چندشاخصه‌ی TOPSIS مبتنی بر یکنواخت‌سازی مطلوبیت شاخص‌ها، مجله مدلسازی پیشرفته ریاضی، دوره 10،  شماره  1، ص ص 196-214.
 
[3] کاظمی‌فرد، ا. و صادقیان، ر. تصمیم‌گیری‌های چند معیاره، انتشارات دانش‌پرور، 1397.
 
[4] Chachi, J., Kazemifard, A., Jalalvand, M. (2021). A multi-attribute assessment of fuzzy regression models, Iranian Journal of Fuzzy Systems, 18, 131-148.
 
[5] Dodo, B.I., Li, , Y., Liu, X. (2017). Retinal OCT image segmentation using fuzzy histogram hyperbolization and continuous max-flow,  IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS), pp. 745-750.
 
[6] Dodo, B.I., Li, , Y., Tucker, A., Liu, X. (2019). Retinal OCT segmentation using fuzzy region competition and level set methods, IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS), pp. 93-98.
 
[7] Fang, L., Cunefare, D., Wang, C., Guymer, R.H., Li, S., Farsiu, S. (2017). Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search, Biomedical Optics Express, 8, 2732-2744.
 
[8] Garvin, M.K., Abramoff, M.D., Wu, X., Russell, S.R., Burns, T.L., Sonka, M. (2009). Automated 3-D intraretinal layer segmentation of macular spectraldomain optical coherence tomography images, IEEE Transactions on Medical Imaging, 28, 1436-1447.
 
[9] González-López, A., de Moura, J., Novo, J., Ortega, M., Penedo, M.G. (2019). Robust segmentation of retinal layers in optical coherence tomography images based on a multistage active contour model, Heliyon, 5(2), pp 01271.
 
[10] Kazemifard, A., Chachi, J. (2021). MADM approach to analyse the performance of fuzzy regression models, J. Ambient Intell. Human. Comput. https://doi.org/10.1007/s12652-021-03394-4.
 
[11] Kiaee, F., Fahimi, H., Rabbani, H. (2018). Intra-retinal layer segmentation of optical coherence tomography using 3d fully convolutional networks, In 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 2795-2799.
 
[12] Lee, K., Niemeijer, M., Garvin, M.K., Kwon, Y.H., Sonka, M., Abramoff, M.D. (2009). Segmentation of the optic disc in 3-D OCT scans of the optic nerve head, IEEE Transactions on Medical Imaging, 29, 159-168.
 
[13] Long, J., Shelhamer, E., Darrell, T. (2015). Fully convolutional networks for semantic segmentation, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431-3440.
 
[14] Lu, D., Heisler, M., Lee, S., Ding, G.W., Navajas, E., Sarunic, M.V., Beg, M.F. (2019). Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network. Medical Image Analysis, 54, 100-110.
 
[15] McDonough, K., Kolmanovsky, I., Glybina, I.V. (2015). A neural network approach to retinal layer boundary identification from optical coherence tomography images, In 2015 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1-8.
 
[16] Noh, H., Hong, S., Han, B. (2015). Learning deconvolution network for semantic segmentation, In Proceedings of the IEEE International Conference on Computer Vision (pp. 1520-1528).
 
[17] Ronneberger, O., Fischer, P., Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation, In International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234-241, Springer, Cham.
 
[18] Roy, A.G., Conjeti, S., Karri, S.P.K., Sheet, D., Katouzian, A., Wachinger, C., Navab, N. (2017). ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks, Biomedical Optics Express, 8, 3627-3642.
 
[19] Sleman, A.A., Soliman, A., Elsharkawy, M., Giridharan, G., Ghazal, M., Sandhu, H., Schaal, S., Keynton, R., Elmaghraby, A., ElBaz, A. (2021). A novel 3D segmentation approach for extracting retinal layers from optical coherence tomography images, Medical Physics, 48, 1584-1595.
 
[20] H. Soltanizadeha, H., Rezaee Oshterinana, S. (2014). Fully Automated lumen detection in intravascular OCT images by using fuzzy system, International Journal of Engineering and Technology sciences 2, 388-389.
 
[21] Xu, J., Tolliver, D.A., Ishikawa, H., Wollstein, G., Schuman, J.S. (2009). 3D OCT retinal vessel segmentation based on boosting learning. In World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany (pp. 179-182). Springer, Berlin, Heidelberg.
 
[22] Zacks, J.M., Speer, N.K., Swallow, K.M., Maley, C.J. (2010). The brain’s cuttingroom floor: Segmentation of narrative cinema, Frontiers in human neuroscience, 4, 168.