Weighting approaches in fitting fuzzy regression models

Document Type : Original Article

20.1001.1.27174409.1397.1.2.5.8/DOR

Abstract

In this paper, we replace the objective functions of fuzzy regressions with the fitting criteria of least squares error and minimum absolute value of deviations (errors) with objective functions based on the weighted sum of functions of errors (deviations or residuals) or ordered errors. According to the method of selecting the optimal weights and the type of function applied to the errors, the solid and unstable approaches common in fuzzy regression models are generalized based on new relationships based on such good fit criteria. We will also make a brief reference here to the calculations related to the optimization problems of such models. Such approaches have a great impact on reducing the destructive effects of Pert observations in estimating the optimal model and are a good alternative to fuzzy regression models with the ability to detect Pert observations. On the other hand, these methods are generalizations of fuzzy regression models of least squares and least absolute values ​​of deviations and can be used to model any combination of input-accurate / fuzzy and output-accurate / fuzzy observations.

Keywords


[1] چاچی، ج. و  روزبه، م. (۱۳۹۶). مدل سازی داده های مهندسی آب با استفاده از روش رگرسیون فازی استوار کمترین مربعات پیراسته، مجله مدل سازی پیشرفته ریاضی، دوره ۷، شماره ۱بهار و تابستان ۱۳۹۶،صص  ۱ تا ۰۱۸
 
[2] رضایی، ک. و رضایی، ح. (۱۳۹۷). بررسی معیارهای فاصله و شباهت برای مجموعه های فازی و برخی از توسعه های آنها، سیستم های فازی و کاربردها، دوره ۲، شماره ۱، پاییز و زمستان ۱۳۹۷، در حال چاپ.
 
[3] Chachi, J. (2019). A weighted least squares fuzzy regression for crisp input-fuzzy output data, IEEE Transactions on Fuzzy Systems, DOI: 438 10.1109/TFUZZ.2018.2868554.
 
[4] Chachi, J., Chaji, A. (2019). Detection of outliers problems and weighted fuzzy regression, Submitted.
 
[5] Chachi, J., Chaji, A. (2019). Quantile fuzzy regression and detection of outlier problems, Submitted.
 
[6] Chachi, J., Roozbeh, M. (2017). A fuzzy robust regression approach applied to bedload transport data, Communications in Statistics-Simulation and Computation, 47(3), 1703-1714.
 
[7] Chachi, J., Taheri, S. M., D’Urso, P., (2019). -Estimates for Least-Squares Fuzzy Regression, Submitted.
 
[8] Chachi, J., Taheri, S. M., Fattahi, S. and Ravandi, S. A. H. (2016). Two robust fuzzy regression models and their application in predicting imperfections of cotton yarn, J. Textiles Polym., 4(2), 60-68.
 
[9] Coppi, R., D’Urso, P., Giordani, P., Santoro, A. (2006). Least squares estimation of a linear regression model with lr fuzzy response, Computational Statistics and Data Analysis, 51, 267-286.
 
[10] D’Urso, P., Massari, R. (2013). Weighted least squares and least median squares estimation for the fuzzy linear regression analysis, Metron, 71, 279-306.
 
[11] D’Urso, P., Massari, R., Santoro, A. (2011). Robust fuzzy regression analysis, Information Sciences, 181, 4154-4174.
 
[12] Huber, P., Ronchetti, E. M. (2009). Robust Statistics, 2ed., Wiley, NJ.
 
[13] Leski, J. M., Kotas, M. (2015). On robust fuzzy c-regression models, Fuzzy Sets and Systems, 279, 112-129.
 
[14] Tanaka, H., Hayashi, I., Watada, J. (1989). Possibilistic linear regression analysis for fuzzy data, European J. Operational Research, 40, 389-396.
 
[15] Tanaka, H., Uegima, S., Asai, K. (1982). Linear regression analysis with fuzzy model, IEEE Trans. Syst. Man Cybemet., 12, 903-907.
 
[16] Varga, S. (2007). Robust estimations in classical regression models versus robust estimations in fuzzy regression models, Kybernetika, 43, 503-508.