توسعه چارچوب تحلیل سلسله مراتبی برای تصمیم‌گیری گروهی در محیط فازی مردد (نمونه کاوی: اولویت‌بندی بهبود فرآیندهای کسب و کار در شرکت توزیع برق استان مرکزی)

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی صنایع، دانشکده فنی و مهندسی، دانشگاه اراک، اراک، ایران

چکیده

امروزه موقعیت رقابتی سازمان‌ها بر مبنای قابلیت‌ها، مهارت‌ها و دانش نهفته در فرآیندهای سازمانی آنها تعریف شده و فرآیندهای کسب و کار یکی از دارایی‌های کلیدی سازمان‌ها به شمار می‌رود. با این وجود منابع محدود در اختیار و در عین حال تفاوت فرایندها از جنبه‌های مختلف، بیانگر لزوم به‌کارگیری رویکردی مدون برای رتبه‌بندی پروژه‌های بهبود در سازمان است. این تفاوت‌ها از جنبه‌های مختلفی نظیر ارزش خروجی، سطح تاثیر در سازمان، پیچیدگی، زمان و سرمایه مورد نیاز برای بهبود مطرح هستند که برای اندازه‌ گیری آنها اغلب نیاز به اخذ نظرات قضاوتی خبرگان است. پژوهش حاضراز تحلیل سلسله مراتبی فازی مبتنی بر ترکیبی از مجموعه‌های فازی مردد و مجموعه‌های فازی نوع-2 برای این رده‌بندی استفاده می‌کند. این رویکرد در شرکت توزیع برق استان مرکزی به کار گرفته شده است. رویکرد مورد استفاده ساختاری انعطاف پذیر برای اخذ نظرات خبرگان و عدم قطعیت و ابهام نهفته در نظرات ایشان فراهم می‌کند و درعین‌ حال فرایند تصمیم‌گیری گروهی در سازمان را بدون ساده‌ سازی و کاهش سطح پیچیدگی‌ قضاوتهای کلامی فراهم می‌کند. نتایج حاصل بیانگر اولویت بالای فرایندهای بهره برداری، نگهداری و توزیع شبکه، و فرآیند ایجاد و توسعه شبکه توزیع و نیز مدیریت مالی در این سازمان برای اجرای پروژه‌های بهبود فرایندی می‌باشد.

کلیدواژه‌ها


[1] اسلامی, ا. نظریه مجموعه‌های فازی و تعمیم‌های آن. سیستم‌های فازی و کاربردها، 1، 1-22.
 
[2] نهاوندی، ن. و نوروزی، ا. ( 1390 ). ارزیابی پیمانکاران با کمک روش‌های چند معیاره فازی دارای روابط مستقل و وابسته (مطالعه موردی: پیمانکاران راهبری شرکت قطارهای مسافری رجا)، پژوهشنامه حمل و نقل، 8(3)، 303-312.
 
[3] Acar, C., Beskese, A., & Temur, G. T. (2018). Sustainability analysis of different hydrogen production options using hesitant fuzzy AHP. International Journal of Hydrogen Energy, 43(39), 18059-18076.
 
[4] Adar, T., & Kilic Delice, E. (2019). An integrated MC-HFLTS & MAIRCA method and application in cargo distribution companies. International Journal of Supply and Operations Management, 6(3), 276-281.
 
[5] APQC. (2019). Process Classification Framework (PCF)-Energy and Utility Utilities - PDF Version 7.2.1. Retrieved Feb 20, 2022, from https://www.apqc.org/resource-library/free-content/nojs?nid=443798.
 
[6] Bagni, G., Godinho Filho, M., Thürer, M., & Stevenson, M. (2021). Systematic review and discussion of production control systems that emerged between 1999 and 2018. Production Planning & Control, 32(7), 511-525.
 
[7] Beskese, A., Camci, A., Temur, G. T., & Erturk, E. (2020). Wind turbine evaluation using the hesitant fuzzy AHP-TOPSIS method with a case in Turkey. Journal of Intelligent & Fuzzy Systems, 38(1), 997-1011.
 
[8] Bowen, D. E., & Youngdahl, W. E. (1998). “Lean” service: in defense of a production‐line approach. International journal of service industry management.
 
[9] Büyük¨ozkan G, Güler M. (2020) Analysis of companies’ digital maturity by hesitant fuzzy linguistic MCDM methods. J Intell Fuzzy Syst, 38(1):1119–32.
 
[10] Büyük¨ozkan G, Karabulut Y, Mukul E. (2018) A novel renewable energy selection model for United Nations’ sustainable development goals. Energy,165, 290–302.
 
[11] Büyüközkan, G., Mukul, E., & Kongar, E. (2021). Health tourism strategy selection via SWOT analysis and integrated hesitant fuzzy linguistic AHP-MABAC approach. Socio-Economic Planning Sciences, 74, 100929.
 
[12] Candan, G. (2020). Efficiency and performance analysis of economics research using hesitant fuzzy AHP and OCRA methods. Scientometrics, 124(3), 2645-2659.
 
[13] Celik, E., & Akyuz, E. (2018). An interval type-2 fuzzy AHP and TOPSIS methods for decision-making problems in maritime transportation engineering: the case of ship loader. Ocean Engineering, 155, 371-381.
 
[14] Çetinkaya, C., Özkan, B., Özceylan, E., & Haffar, S. (2022). An eco-friendly evaluation for locating wheat processing plants: an integrated approach based on interval type-2 fuzzy AHP and COPRAS. Soft Computing, 26(9), 4081-4102.
 
[15] Durand, M., & Truck, I. (2018). A new proposal to deal with hesitant linguistic expressions on preference assessments. Information Fusion, 41, 176-181.
 
[16] Ecer, F. (2020). Multi-criteria decision making for green supplier selection using interval type-2 fuzzy AHP: a case study of a home appliance manufacturer. Operational Research, 1-35.
 
[17] Eslami,S. (2018). Fuzzy set theory and its generalizations. Fuzzy Systems and its Applications, 1(1), 1-22. doi: 20.1001.1.27174409.1397.1.1.1.2=DOR
 
[18] González-Varona, J. M., López-Paredes, A., Poza, D., & Acebes, F. (2021). Building and development of an organizational competence for digital transformation in SMEs. Journal of Industrial Engineering and Management, 14(1), 15-24.
 
[19] Havle, C. A., & Kılıç, B. (2019). A hybrid approach based on the fuzzy AHP and HFACS framework for identifying and analyzing gross navigation errors during transatlantic flights. Journal of Air Transport Management, 76, 21-30.
 
[20] Henrique, D. B., Filho, M. G., Marodin, G., Jabbour, A. B. L. D. S., & Chiappetta Jabbour, C. J. (2021). A framework to assess sustaining continuous improvement in lean healthcare. International Journal of Production Research, 59(10), 2885-2904.
 
[21] Hu, J., Xiao, K., Chen, X.,& Liu, Y. Interval type-2 hesitant fuzzy set and its application in multi-criteria decision making, Computers & Industrial Engineering, 87(2015), 91-103. https://doi.org/10.1016/j.cie.2015.04.031.
 
[22] Kahraman, C., Onar, S. Ç., & Öztayşi, B. (2018). B2C marketplace prioritization using hesitant fuzzy linguistic AHP. International Journal of Fuzzy Systems, 20(7), 2202-2215.
 
[23] Kahraman, C., Öztayşi, B., Sarı, İ. U., & Turanoğlu, E. (2014). Fuzzy analytic hierarchy process with interval type-2 fuzzy sets. Knowledge-Based Systems, 59, 48-57.
 
[24] Karimi, M., Tahayori, H., Tirdad, K., & Sadeghian, A. (2022). A perceptual computer for hierarchical portfolio selection based on interval type-2 fuzzy sets. Granular Computing, 1-21.
 
[25] Kayapinar Kaya, S., & Aycin, E. (2021). An integrated interval type 2 fuzzy AHP and COPRAS-G methodologies for supplier selection in the era of Industry 4.0. Neural Computing and Applications, 33(16), 10515-10535.
 
[26] Khan, S. A., Kaviani, M. A., Galli, B. J., & Ishtiaq, P. (2019). Application of continuous improvement techniques to improve organization performance: A case study. International Journal of Lean Six Sigma.
 
[27] Kutlu Gundogdu, F., & Kahraman, C. (2019). Extension of WASPAS with spherical fuzzy sets. Informatica, 30(2), 269-292.
 
[28] Li, W., Yu, S., Pei, H., Zhao, C., & Tian, B. (2017). A hybrid approach based on fuzzy AHP and 2-tuple fuzzy linguistic method for evaluation in-flight service quality. Journal of Air Transport Management, 60, 49-64.
 
[29] Mendel, J.M. John, R.I. & Liu, F.L. Interval type-2 fuzzy logical systems made simple, IEEE Transactions on Fuzzy Systems, 14(6) (2006), 808–821. https://doi.org/10.1109/tfuzz.2006.879986
 
[30] Mendel, J.M., & Liu, F. (2007). Super-exponential convergence of the Karnik– Mendel algorithms for computing the centroid of an interval type-2 fuzzy set. IEEE Transactions on Fuzzy Systems, 15(2), 309-320.
 
[31] Mi X, Wu X, Tang M, Liao H, Al-Barakati A, Altalhi AH, et al. (2019) Hesitant fuzzy linguistic analytic hierarchical process with prioritization, consistency checking, and inconsistency repairing. IEEE Access, 7:44135–49.
 
[32] Nahavandi, N. and Norouzi, A. (2011) ‘Contractor Analysis Via Fuzzy Madm Techniques With Independent And Interdependent Relationships’, JOURNAL OF TRANSPORTATION RESEARCH, 8(3), 303 - 321.
 
[33] Nguyen, J., Montserrat-Adell, J., Agell, N., Sánchez, M., & Ruiz, F. J. (2020). Fusing hotel ratings and reviews with hesitant terms and consensus measures. Neural Computing and Applications, 32(19), 15301-15311.
 
[34] Norouzi, A. and Hajiagha, H.R. (2021). An interval type-2 hesitant fuzzy bestworst method. Journal of Intelligent & Fuzzy Systems, 40(6), 11625-11652.
 
[35] Norouzi, A., & Namin, H. G. (2019). A hybrid fuzzy TOPSIS–best worst method for risk prioritization in megaprojects. Civil Engineering Journal, 5(6), 1257-1272.
 
[36] Ohta R, Salomon VA, Silva MB. (2020) Classical, fuzzy, hesitant fuzzy and intuitionistic fuzzy analytic hierarchy processes applied to industrial maintenance management. J Intell Fuzzy Syst, 38(1):601–8.
 
[37] Oztaysi, B., Dogan, O., & Gul, H. (2019). Selection of Gamification Elements for Demand Side Energy Management: An Application Using Hesitant Fuzzy AHP. In R&D Management in the Knowledge Era (pp. 299-322). Springer, Cham.
 
[38] Page, S. (2015). The power of business process improvement: 10 simple steps to increase effectiveness, efficiency, and adaptability. Amacom.
 
[39] Pambreni, Y., Khatibi, A., Azam, S., & Tham, J. J. M. S. L. (2019). The influence of total quality management toward organization performance. Management Science Letters, 9(9), 1397-1406.
 
[40] Rodríguez, R. M., Liu, H., & Martínez, L. (2014). A fuzzy representation for the semantics of hesitant fuzzy linguistic term sets. In Foundations of Intelligent Systems (pp. 745-757). Springer, Berlin, Heidelberg.
 
[41] Saaty TL. The analytic hierarchy process. New York: McGraw-Hill; 1980.
 
[42] Salentijn, W., Beijer, S., & Antony, J. (2021). Exploring the dark side of Lean: a systematic review of the lean factors that influence social outcomes. The TQM Journal.
 
[43] Sahu, K., Alzahrani, F. A., Srivastava, R. K., & Kumar, R. (2020). Hesitant fuzzy sets based symmetrical model of decision-making for estimating the durability of Web application. Symmetry, 12(11), 1770.
 
[44] Sari, I. U., & TÜYSÜZ, N. (2022). COVID-19 Risk Assessment of Occupations Using Interval Type 2 Fuzzy Z-AHP & Topsis Methodology. Journal of MultipleValued Logic & Soft Computing, 38.
 
[45] Torra, V. (2010) Hesitant fuzzy sets, International Journal of Intelligent Systems, 25, 529-539, https://doi.org/10.1002/int.20418
 
[46] Van Looy, A. (2021). How the COVID‐19 pandemic can stimulate more radical business process improvements: Using the metaphor of a tree. Knowledge and Process Management, 28(2), 107-116.
 
[47] Vom Brocke, J., Mendling, J., & Rosemann, M. (2021). Planning and Scoping Business Process Management with the BPM Billboard1. Business Process Management Cases Vol. 2: Digital Transformation-Strategy, Processes and Execution, 3.
 
[48] Womack, J. P. Jones, D. T. Roos, D. (1991). The machine that changed the world: The story of lean production. Harper Collins.
 
[49] Yildiz, A., Ayyildiz, E., Taskin Gumus, A., & Ozkan, C. (2021). A framework to prioritize the public expectations from water treatment plants based on trapezoidal type-2 Fuzzy Ahp method. Environmental Management, 67(3), 439-448.
 
[50] Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning-1, Information Sciences, 8, 199-249.
 
[51] Zhenzhen, M. A., Kumaraswamy, P. O. N. N. A. M. B. A. L. A. M., Jianjun, Z. H. U., & Shitao, Z. H. A. N. G. (2018). Dynamic hesitant fuzzy linguistic group decision-making from a reliability perspective. Journal of Systems Engineering and Electronics, 29(5), 1009-1021.