# روشی برای حل مسئله برنامه ریزی خطی دوترازه با پارامترهای فازی شهودی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه ریاضی، دانشکده ریاضی، دانشگاه سیستان و بلوچستان، زاهدان، ایران

10.22034/jfsa.2023.380927.1158

چکیده

در بسیاری از مسائل بهینه سازی همه تصمیم گیرنده ها در یک تراز قرار ندارند بلکه در ساختار سلسله مراتبی هستند. همچنین ممکن است پارامترهای مسئله بصورت قطعی بیان نشده باشند بلکه بصورت انواع مختلفی از فازی یا بازهای مطرح شوند. در این مقاله دو حالت خاص مسئله برنامه ریزی خطی دوترازه را در نظر می گیریم. در یکی از مسائل، همه پارامترهای مسئله بصورت اعداد فازی شهودی ذوزنقه ای و در دیگری بصورت اعداد فازی شهودی مثلثی در نظر گرفته می شوند. با استفاده از روش رتبه بندی مطرح شده، مسئله برنامه ریزی خطی دوترازه قطعی متناظر با هر حالت را بدست می آوریم که با روش های معمول حل می گردد.

کلیدواژه‌ها

موضوعات

#### مراجع

 Ahmad, F., (2021) Robust neutrosophic programming approach for solving intuitionistic fuzzy multiobjective optimization problems. Complex Intell Syst 7(4), 1–20.

 Alessa, N. A. (2021) Bi-Level linear programming of intuitionistic fuzzy. Soft Comput 25, 8635–8641.

 Ali, I., Gupta, S., Ahmed, A. (2019) Multi-objective linear fractional inventory problem under intuitionistic fuzzy environment. International Journal of System Assurance Engineering and Management, 10, 173–189.

 Angelov, P. P. (1997) Optimization in an intuitionistic fuzzy environment. Fuzzy Sets System, 86, 299–306.

 Atanassov, K. T. (2008) 25 years of intuitionistic fuzzy sets, or the most important results and mistakes of mine. in: 7 th International Workshop on Intuitionistic Fuzzy Sets and Generalized Nets, Warsaw.

 Atanassov, K. T. (1999) Intuitionistic Fuzzy Sets: Theory and Applications. Physica-Verlag, Heidelberg.

 Atanassov, K. T. (1986) Intutionistic fuzzy sets. Fuzzy Sets System, 20, 87–96.

 Atanassov, K. T., Pasi, G. R. Yager, R. (2005) Intuitionistic fuzzy interpretations of multi-criteria multi-person and multi-measurement tool decision making. International Journal of Systems Science, 36, 859–868.

 Bard, J. (1990) A branch and bound algorithm for the bilevel programming problem. SIAM Journal on Scientific and Statistical Computing, 11, 281–292.

 Bard, J. (1988) Practical bilevel optimization: algorithms and applications. Kluver Academic Publishers, Netherlands.

 Basu, K., Mukherjee, S. (2012) Solution of a class of intuitionistic fuzzy assignment problem by using similarity measures. Knowledge-Base Systems, 27, 170-179.

 Bharati, S. K., Singh, S. R. (2015) A Note on Solving a Fully Intuitionistic Fuzzy Linear Programming Problem based on Sign Distance. International Journal of Computer Applications, 119, 30–35.

 Bialas, W., Karwan, M. (1984) Two level linear programming. Management Science, 30, 1004–1020.

 Biswas, A., De, AK., (2016) An efficient ranking technique for intuitionistic fuzzy numbers with its application in chance constrained bilevel programming, Adv Fuzzy Syst, 1, 1–12.

 Calvete, H. I., Gal, C., Mateo, M. (2008) A new approach for solving Linear bilevel programs using genetic algorithms. European Journal of Operational Research, 188, 14–28.

 Chutia, R. A. (2021) A novel method of ranking intuitionistic fuzzy numbers using value and θ multiple of ambiguity at flexibility parameters. Soft Computing, 25, 13297–13314.

 Dempe, S. (2002) Foundations of bilevel programming. Springer, Berlin.

 Dubey, D., Chandra, S., Mehra, A. (2012) Fuzzy linear programming under interval uncertainty based on IFS representation. Fuzzy sets and systems, 188, 98–78.

 Dubois, D., Prade, H. (1980) Fuzzy Sets and Systems. Academic Press, New York.

 Enginoǧlu, S., Arslan, B. (2020) Intuitionistic fuzzy parameterized intuitionistic fuzzy soft matrices and their application in decision-making. Computational and Applied Mathematics, 39, 1–20.

 Fathy. E. (2022), A new method for solving the linear programming problem in an interval-valued intuitionistic fuzzy environment. Alexandria Engineering Journal, 61, 10419-10432.

 Grzegorzewski, P. (2003) Distance and orderings in a family of intuitionistic fuzzy numbers. In proceedings of the third conference on fuzzy logic and technology (EUSFLAT 03), 223–227.

 Gupta, S., Haq, A., Ali, I., Sarkar, B., (2021) Significance of multiobjective optimization in logistics problem for multi-product supply chain network under the intuitionistic fuzzy environment. Complex Intell Syst, 7(4), 2119–2139.

 Hansen, P., Jaumard, B., Savard, G. (1992) New branch and bound rules for linear bilevel programming. SIAM Journal on Scientific and Statistical Computing, 13, 1194–1217.

 Hu, Y. T., Wang, G., Wan, Z. (2007) A penalty function method based on Kuhn-Tucker condition for solving linear bilevel programming. Applied mathematics and computation, 188, 808–813.

 Huang, C., Fnang, D., Wan, Z. (2015) An interactive intuitionistic fuzzy method for multilevel linear programming problems. Wuhan University Journal of Natural Sciences, 20, 113–118.

 Judice, J., Faustino, A. (1992) A sequential LCP method for bilevel linear programming. Annals of Operations Research, 34, 89–106.

 Kuo, R. J., Han, Y. S. (2011) A hybrid of genetic algorithm and particle swarm optimization for solving bi-level linear programming problem A case study of supply chain model. Applied Mathematical Modelling, 35, 3905–3917.

 Li, D. F. (2010) A ratio ranking method of triangular intuitionistic fuzzy numbers and its applications to MADM problems. Computers and Mathematics with Applications, 60, 1557-1570.

 Liu, Y., Li, W., Xu, X. l. (2008) Intuitionistic Fuzzy Bilevel programming by Particle Swarm Optimization. IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application.

 Mahajan, S., Gupta, S. K. (2021) On fully intuitionistic fuzzy multiobjective transportation problems using different membership functions. Annals of Operations Research, 296, 211–241.

 Mahapatra, G., Mitra M., Roy, T. (2010) Intuitionistic fuzzy multiobjective mathematical programming on reliability optimization model. International Journal of Fuzzy Systems, 12, 259–266.

 Mitchell, H. B. (2004) Ranking - Intuitionistic Fuzzy numbers. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 12, 377–386.

 Nagoorgani, A., Ponnalagu, K. (2012) A new approach on solving intuitionistic fuzzy linear programming problem. Applied Mathematical Sciences, 6, 3467–3474.

 Nagoorgani, A., Ponnalagu, K., (2013) An Approach to Solve Intuitionistic Fuzzy Linear Programming Problem Using Single Step Algorithm. International Journal of Pure and Applied Mathematics, 86, 819–832.

 Nehi, H. M. (2010) A new ranking method for intuitionistic fuzzy numbers. International Journal of Fuzzy Systems, 12, 80–86.

 Niu, L., Li, J., Li, F., Wang, Zh. (2020) Multi-criteria decision-making method with double risk parameters in interval-valued intuitionistic fuzzy environments. Complex and Intelligent Systems, 6, 669–679.

 Perez-Canedo, B., Concepcion-Morales E. R., (2019) On LR-type fully intuitionistic fuzzy linear programming with inequality constraints: Solutions with unique optimal values. Expert Systems with Applications, 128, 246–255.

 Plamen, P., Angelov, P. (1997) Optimization in an intuitionistic fuzzy environment. Fuzzy Sets and Systems, 80, 299–306.

 Prakash, K. A., Suresh, M., Vengataasalam, S. (2016) A new approach for ranking of intuitionistic fuzzy numbers using a centroid concept. Mathematical Sciences, 10, 177–184.

 Rezvani, S. (2013), Ranking method of trapezoidal intuitionistic fuzzy numbers. Annals of Fuzzy Mathematics and Informatics, 10, 1–10.

 Roy, S. K., Midya, S. (2019) Multi-objective fixed-charge solid transportation problem with product blending under intuitionistic fuzzy environment. Applied Intelligence, 49, 3524–3538.

 Sahoo, D., Tripathy, A. K., Pati, J. K., (2022) Study on multi-objective linear fractional programming problem involving pentagonal intuitionistic fuzzy number. Results in Control and Optimization, 6 ,100091.

 Shashi, A., Chavi, G. (2013) Bi-Level Multi-Objective Linear Programming under Intuitionistic Fuzzy Environment. International Journal of Pure and Applied Sciences and Technology, 17, 45–61.

 Singh, V. P., Sharma, K., Chakraborty, D., Ebrahimnejad, A. (2022) A novel multi-objective bilevel programming problem under intuitionistic fuzzy environment and its application in production planning problem. Complex Intell. Syst, 8, 3263–3278.

 Stackelberg, H. V. (1952) Theory of the Market Economy. Oxford University Press, New York.

 Suresh, M., Vengataasalam, S., Arun Prakash, K. (2014) Solving intuitionistic fuzzy linear programming problems by ranking function. Journal of Intelligent and Fuzzy Systems , 27, 3081–3087.

 Wei, C. P., Tang, X. (2010) Possibility degree method for ranking intuitionistic fuzzy numbers. In the Proceed. Int. Confer. Web Intell. Intelligen Agent Technol.

 Yu, G. F., Li, D. F., (2022) A novel intuitionistic fuzzy goal programming method for heterogeneous MADM with application to regional green manufacturing level evaluation under multi-source information. Computers Industrial Engineering, 174, 108796.

 Zadeh, L. A. (1965), Fuzzy sets. Information and Control, 8, 338–353.

 Zhao, X., Zheng, Y., Wan, Zh. (2017) Interactive intuitionistic fuzzy methods for multilevel programming problems. Expert Systems with Applications, 72, 258–268.

### سابقه مقاله

• تاریخ دریافت: 24 دی 1401
• تاریخ بازنگری: 08 بهمن 1401
• تاریخ پذیرش: 28 بهمن 1401