کاربرد منطق فازی در تشخیص تپش قلب نامنظم با استفاده از نوار قلب

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی کامپیوتر، دانشکده فنی و مهندسی، دانشگاه لرستان

20.1001.1.27174409.1399.3.1.3.8/DOR

چکیده

الکتروکاردیوگرام از مهمترین سیگنال‌های حیاتی است که توسط پزشکان برای اهداف تشخیصی مورد استفاده قرار می‌گیرد. این سیگنال‌ها اطلاعات کلیدی درباره فعالیت الکتریکی قلب فراهم می‌آورند و ثبت و نمایش آن‌ها در طول زمان، منجر به مشاهده تغییرات فعالیت قلب می‌گردد. امروزه طبقه‌بندی این سیگنال‌ها کاربرد وسیعی در علوم پزشکی و تشخیص بیماری‌ها دارد و استفاده از روش‌های خودکار آنالیز آن‌ها با بهره‌گیری از تکنیک‌های مبتنی بر رایانه ، تجزیه و تحلیل خودکار شکل و الگوی شکل موج سیگنال‌های قلب می‌تواند به پزشکان در تشخیص نوع بیماری کمک بسیاری نماید. تکنیک‌های مختلفی برای طبقه‌بندی بیماری‌های قلبی که به صورت آریتمی شناخته می‌شوند، اختراع و کشف شده -است. این مقاله با هدف بررسی توسعه تکنیک‌های مختلف طبقه‌بندی آریتمی قلبی بر اساس منطق فازی به همراه بحث در مورد تکنیک‌های پذیرفته ‌شده انجام شده‌ است.

کلیدواژه‌ها


[1] Acharya, R., Suri, J. S., Spasn, J.A.E., Krishnan, 8. M. (2007). Advances in Cardiac Signal Processing. Springer Bertin Heidelberg New York, 13, 327-338.
 
[2] Anuredha, B., Reddy, V. C. V., (2008). ANN for classification of cardiac arthythmias, ARPN Journal of Engineering and Applied Sciences.
 
 
 
[3] Asl, B. M. Z., Setarehdan S. K., (2006). Neural Network Based Arrhythmia Classification Using Heart Rate Variability Signal. Proceedings of the 2nd International Symposium on Biomedical Engineering, Bangkok, Thailand, 149-162.
 
[4] Balaskas, K., Siozios, K. (2019). ECG Analysis and Heartbeat Classification Based on Shallow Neural Networks,8th International Conference on Modern Circuits and Systems Technologies (MOCAST), 1-4.
 
[5] Barill, T. (2003). The Six Second ECG: A Practical Guidebook to Basic ECG Interpretation. nursecom.
 
[6] Bayati, H., Dowlatshahi, M. B., Paniri, M. (2020). MLPSO: A Filter Multi-label Feature Selection Based on Particle Swarm Optimization. 25th International Computer Conference, Computer Society of Iran (CSICC), 1-6.
 
[7] Benitez, D., Gaydecki, P. A., Zaidib, A., Fitzpatrick, A.P. (2001). The use of the Hilbert transform in ECG signal analysis. Computers in Biology and Medicine, 31, 399-406.
 
[8] Bezdek, J.C., Pattern Recognition with Fuzzy Objective Function Algorithms. 2013.
 
[9] Bogdanova, I., Rinc ́, F., Atienza, D. (2012). A Multi-lead ECG Classification Based On Random Projection Features. IEEE Xplore, 2012, 625-628.
 
[10] Cai, D., He, X., Zhang, W.V., Han, J. (2007). Regularized locality preserving indexing via spectral regression, sixteenth ACM conference on Conference on information and knowledge management, ACM, 741–750.
 
[11] Channappa B., Satish T., Hamde, Laxman M., Waghmare (2011). ECG Acquisition and Analysis System for Diagnosis of Heart Diseases. Sensors & Transducers Journal, 133, 18-29.
 
[12] Chazal, P.De., O'Dwyer, M., Reilly, R.B. (2004) Automatic Classification of Heartbeats Using ECG Morphology and Heartbeat Interval Features. IEEE Transaction on Biomedical Engineering, 51, 1196- 1206.
 
[13] Cortes, C., Vapnik, V. (1995). Support-vector networks .Machine Learning, 20, 273-2970.
 
[14] Dowlatshahi, M.B., Derhami, V., Nezamabadi-pour, H. (2018). A Novel Three-Stage Filter-Wrapper Framework for miRNA Subset Selection in Cancer Classification. Informatics, 5, 13.
 
[15] Dowlatshahi, M.B., Derhami, V., Nezamabadi-pour, H. (2019). Fuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization. Iranian Journal of Fuzzy Systems.
 
[16] Dowlatshahi, M.B., Derhami, V., Nezamabadi-pour, V. (2017). Ensemble of Filter-Based Rankers to Guide an Epsilon-Greedy Swarm Optimizer for High-Dimensional Feature Subset Selection. Information, 8, 152.
 
[17] Dowlatshahi, M.B., Nezamabadi-pour, H. (2014). GGSA: A Grouping Gravitational Search Algorithm for data clustering. SienceDirect, 36, 114-121.
 
[18] Duin, R.P.W., Loog, M. (2004). Linear dimensionality reduction via a heteroscedastic extension of lda: the chernoff criterion IEEE Trans, 26, 732–739.
 
[19] Dunn, J. C. (1974) A Fuzzy Relative of the ISODATA Process and its Use in Detecting Compact Well Separated Clusters. Journal of Cybernetics, 3, 32–57.
 
[20] Farhan, A., Wei, CL., Ahmed, MT. (2018). A Qualitative Overview of Fuzzy Logic in ECG Arrhythmia Classification, Semantic Scholar, 5, 232-239.
 
[21] Gharieb, R.R., Massoud, M., Nady, S., Moness, M. (2016) Fuzzy c-means in features space of Teager-Kaiser Energy of continuous wavelet coefficients for detection of PVC beats in ECG. 2016 8th Cairo International Biomedical Engineering Conference (CIBEC). Cairo, 72-75.
 
[22] Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE (2003). PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation, 101, 215-220.
 
[23] Hashemi, A., Dowlatshahi M. B., (2020). MLCR: A Fast Multi-label Feature Selection Method Based on K-means and L2-norm. 25th International Computer Conference, Computer Society of Iran (CSICC), 1-7.
 
[24] Hashemi, A., Dowlatshahi, M.B., Nezamabadi-pour, H., (2019). MGFS: A multi-label graph-based feature selection algorithm via PageRank centrality. ScienceDirect, 142.
 
[25] Homaeinezhad, M.R., Tavakkoli, E., Ghaffari, A. (2011). Discrete Wavelet-based Fuzzy Network Architecture for ECG RhythmType Recognition: Feature Extraction and Clustering-Oriented Tuning of Fuzzy Inference System. International Journal of Signal Processing, Image Processing and Pattern Recognition, 4, 107-130.
 
[26] Illustration from Anatomy & Physiology, Connexions Web Site, 2013,
http://cnx.org/content/col11496/1.6/.
 
[27] Inan, O.T., Giovangrandi, L., Kovacs. G. T. A. (2006). Robust neural network-based classification of premature ventricular contractions using wavelet transform and timing interval features.IEEE Transaction on Biomedical Engineering, 53, 2507-2515.
 
[28] Ince, T., Kiranyaz, S., Gabbouj, M. (2009). A Generic and Robust System for Automated Patient-specific Classification of Electrocardiogram Signals. IEEE Transactions on Biomedical Engineering, 56, 1415-1426.
 
[29] Introductory Guide to Identifying ECG Irregularities,DailyCareBioMedical Inc.2016
 
[30] Jalal A., Nasiri, Naghibzadeh, M., Yazdi, H.S., Naghibzadeh, B. (2009). ECG Arrhythmia Classification with Support Vector Machines and Genetic Algorithm. Third UKSim European Symposium on Computer Modeling and Simulation, 187-192.
 
[31] Jeppesen, J., Beniczky, S., Johansen, P., Sidenius, P., Frederiksen, A.F. (2017). Fully automated R-peak detection algorithm for patients with epilepsy: First step towards protable seizure detector. Elsevier, 128, 9, e282.
 
[32] Karpagachelvi, S., Arthanari, M., Sivakumar, M. (2011). Classification of ECG Signals Using Extreme Learning Machine. Computer and Information Science, 4, 42-52.
 
[33] Kohli, N., Verma, N.K., Roy. A. (2010) SVM Based Methods for Arrhythmia Classification in ECG.International Conference on Computer & Communication Technology, 486490.
 
[34] LEE, C.C. (1990). Fuzzy Logic Controller, Fuzzy Logic in Control Systems. IEEE, 20, 404-418.
 
[35] Lagerholm, M., Peterson, C., Braccini, G., Edenbrandt, L., Sörnmo, L. (2000). Clustering ECG Complexes Using Hermite Functions and Selforganizing Maps. IEEE Transaction on Biomedical Engineering, 47, 838-848.
 
[36] Laguna P., Mark R.G., Goldberger A.L., Moody G.B. (1997). A Database for Evaluation of Algorithms for Measurement of QT and Other Waveform Intervals in the ECG. Computers in Cardiology, 24, 673-676.
 
[37] Laitala, J., Jiang, M., Syrjälä, E., Naeini, E.K., Airola A., Rahmani, A.M., Dutt, N.D.D., Liljeberg, P. (2020). Robust ECG R-peak detection using LSTM. 35th Annual ACM Symposium on Applied Computing Association for Computing Machinery, New York, NY, USA, 1104-1111.
 
[38] Lei, W.K., Li, B.N., Dong, M.C., Vai, M.I. (2007). AFC-ECG: An adaptive fuzzy ECG classifier. Springer, 39, 189-199.
 
[39] Li, H., Liang, H., Miao, C. et al (2016). Novel ECG Signal Classification Based on KICA Nonlinear Feature Extraction. Circuits Syst Signal Process 35, 1187–1197.
 
[40] Liu, T., Si, Y., Wen, D., Zang, M., Lang, L. (2016). Dictionary learning for VQ feature extraction in ECG beats classification. Expert Systems with Applications, 53, 129-137.
 
[41] MENDEL, J. M. (1995) Fuzzy Logic Systems for Engineering: A tutorial. IEEE, 83, 345-377.
 
[42] Mahesh, V., Kandaswamy, A., Vimal, C., Sathish, B. (2009). ECG arrhythmia classification based on logistic model tree. J. Biomedical Science and Engineering, 2, 405-411.
 
[43] Martis, R.J., Chakraborty, C., Ray, A.K. (2009). A two-stage mechanism for registration and classification of ECG using Gaussian mixture model. Pattern Recognition, 42, 2979-2988.
 
[44] Mehta, S.S., Lingayat, N.S. (2007). Support Vector Machine for Cardiac Beat Detection in Single Lead Electrocardiogram. IAENG, International Journal of Applied Mathematics, 1630-1635.
 
[45] Merone, M., Soda, P., Sansone, M., Sansone, C. (2017). ECG databases for biometric systems: a systematic review. Expert Systems, 67, 189–202.
 
[46] Moody, G.B., Mark, R.G. (2001). The impact of the MIT-BIH Arrhythmia Database. IEE, 20, 45-50.
 
[47] Murugan, S., Radhakrishnan, S. (2010). Improving Ischemic Beat Classification Using Fuzzy-Genetic Based PCA And ICA. (IJCSE) International Journal on Computer Science and Engineering. 02, 05, 1532-1538.
 
[48] Naghsh-Nilchi, A. R. Mohammadi A. R. K. (2009). Cardiac Arrhythmias Classification Method Based on MUSIC, Morphological Descriptors, and Neural Network. EURASIP Journal on Advances in Signal Processing, 2008.
 
[49] Nazmy, T.M., El-Messiry, H., Al-Bokhity, B. (2010). Adaptive Neuro-Fuzzy Inference System for classification of ECG signals. The 7th International Conference on Informatics and Systems (INFOS), 1-6.
 
[50] Nolle, F.M., Badura, F.K., Catlett, J.M., Bowser, R.W., Sketch, M.H. (1986). CREI-GARD, a new concept in computerized arrhythmia monitoring systems. Computers in Cardiology, 13, 515-518.
 
[51] Nunes, J.C., Nait-Ali, A. (2005) Hilbert transform-based ECG modeling. Biomedical Engineering, 39, 133-137.
 
[52] Owis, M., Abou-Zied, A., Youssef, A.B., Kadah, Y. (2001). Robust feature extraction from ECG signals based on nonlinear dynamical modeling. 23rd Annual International Conference IEEE Engineering in Medicine and Biology Society, 2 ,1585-1588.
 
[53] Paniri, M., Dowlatshahi, M.B., Nezamabadi-pour, H. (2019). MLACO: A multi-label feature selection algorithm based on ant colony optimization. ScienceDirect, 192.
 
[54] Roopa, C.K., Harish, B.S, (2018). Interpretation of ECG using modified Intuitionistic fuzzy C-MEANS clustering for arrhythmia data. ICTACT, 09.
 
[55] Roopa, C.K., Harish, B.S., Aruna Kumar S.V., (2018). A Novel Method of Clustering ECG Arrhythmia data using Robust Spatial Kernel Fuzzy C-Means. SienceDirect, 143, 133-140.
 
[56] Sahoo, S., Dash, M., Behera, S., Sabut, S. (2020). Machine Learning Approach to Detect Cardiac Arrhythmias in ECG Signals: A Survey – IRBM.
 
[57] Sahoo, S., Kanungo, B., Behera, S., Sabut, S. (2017). Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities. Measurement, 108, 55-66.
 
[58] Sakhare, P.B., Ghongade, R. (2015). An Approach for ECG Beats Classification using Adaptive Neuro Fuzzy Inference System. Annual IEEE India Conference (INDICON), 1-6.
 
[59] Sakhare, P.B., Ghongade, R. (2015). An approach for ECG beats classification using Adaptive Neuro Fuzzy Inference System. Annual IEEE India Conference (INDICON). New Delhi, 1-6.
 
[60] Shyu, L.Y., Wu, W.H., Hu, H.U. (2004). Using wavelet transform and fuzzy neural network for VPC detection from the holter ECG. IEEE Transactions on Biomedical Engineering. 51, 7, 1269-1273.
 
[61] Song, M.H., Lee, J., Cho, S.P., Lee, K.J., Yoo, S.K. (2005). Support Vector Machine Based Arrhythmia Classification Using Reduced Features. International Journal of Control, Automation and Systems, 3, 571-579.
 
[62] Spach, M.S., Kootsey, J.M. (1983) The nature of electrical propagation in cardiac muscle Am. J. Physiol. Heart Circ. Physiol, 244 (H),3-22.
 
[63] Taddei, A., Distante, G., Emdin, M., Pisani, P., Moody, G.B., Zeelenberg, C., Marchesi, C. (1992). The European ST-T Database: standard for evaluating systems for the analysis of ST-T changes in ambulatory electrocardiography. European Heart Journal, 13, 1164-1172.
 
[64] Venkatesan, C., Karthigaikumar, P., Paul, A., Satheeskumaran, S., Kumar, R (2018). ECG Signal Preprocessing and SVM Classifier-Based Abnormality Detection in Remote Healthcare Applications. IEEE. 6, 9767-9773.
 
[65] Venkatesan, C., Karthigaikumar, P., Varatharajan, R (2018). A novel LMS algorithm for ECG signal preprocessing and KNN classifier based abnormality detection. Multimed Tools Appl, 77, 10365–10374.
 
[66] Warmerdam, G. J. J., Vullings, R., Schmitt, L., Van Laar, J. O. E. H., Bergmans, J. W. M. (2018). Hierarchical Probabilistic Framework for Fetal R-Peak Detection, Using ECG Waveform and Heart Rate Information. IEEE Transactions on Signal Processing, 66, 16, 4388-4397.
 
[67] Yong, L.S., Yong, A.D., Hae, S.M., Joung, L.K. (2011). The Classification of Electrocardiograph Arrhythmia Patterns using Fuzzy Support Vector Machines, International Journal of Fuzzy Logic and Intelligent Systems,11, 204-210.
 
[68] Zadeh, L.A. (1998). Fuzzy Logic University of California. IEEE, 4, 83-93.
 
[69] Zhang, Y., Zhang, Y., Lo, B., Xu, W. (2019). Wearable ECG signal processing for automated cardiac arrhythmia classification using CFASE-based feature selection. Expert Systems, e12432.
 
[70] Özcan, N.O., Gurgen, F. (2010). Fuzzy Support Vector Machines for ECG Arrhythmia Detection. 20th International Conference on Pattern Recognition, 2973-2976.