شبکه های عصبی در تحلیل اطلاعات فازی از تصاویر شبکیه چشم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه شهید چمران اهواز، دانشکده علوم ریاضی و کامپیوتر، گروه علوم کامپیوتر

2 دانشگاه شهید چمران اهواز، دانشکده علوم ریاضی و کامپیوتر، گروه آمار

3 دانشگاه شهید چمران اهواز، دانشکده علوم ریاضی و کامپیوتر، گروه ریاضی

10.22034/jfsa.2022.315462.1101

چکیده

در اﯾﻦ ﻣﻘﺎﻟﻪ ﺑﻪ ﺗﺤﻠﯿﻞ اﻃﻼﻋﺎت ﻧﺎدﻗﯿﻖ از ﺗﺼﺎوﯾﺮ ﺷﺒﮑﯿﻪ ﭼﺸﻢ اﻧﺴﺎن در ﻗﺎﻟﺐ ﯾﮏ ﮐﯿﺖ ﻗﺎﺑﻞ ﻧﺼﺐ ﺑﺮ ﮔﻮﺷﯽﻫﺎی ﻫﻮﺷﻤﻨﺪ ﭘﺮداﺧﺘﻪ ﺷﺪه اﺳﺖ. در اﯾﻦﺧﺼﻮص اﯾﻦ ﻣﻨﻈﻮر در ﭼﺎرﭼﻮب ﯾﺎدﮔﯿﺮی ﻋﻤﯿﻖ و ﺑﺮ اﺳﺎس اﻃﻼﻋﺎت ﻧﺎدﻗﯿﻖ ﺣﺎﺻﻞ از ﺗﺼﺎوﯾﺮ ﻻﯾﻪﻫﺎی ﺷﺒﮑﯿﻪ ﺑﻪ آﻣﻮزش ﯾﮏ ﺷﺒﮑﻪ اﻧﺘﻬﺎ-ﺑﻪ-اﻧﺘﻬﺎ ﺑﻪ ﻣﻨﻈﻮر ﺗﺤﻠﯿﻞ و ﻗﻄﻌﻪﺑﻨﺪی ﻻﯾﻪﻫﺎی ﺷﺒﮑﯿﻪ ﻣﺒﺎدرت ﺷﺪه اﺳﺖ. ﻧﺘﯿﺠﮥ اﯾﻦ ﻣﻄﺎﻟﻌﻪ ﺑﻪ ﻣﻌﺮﻓﯽ ﯾﮏ ﮐﯿﺖ ﻗﺎﺑﻞ ﻧﺼﺐ ﺑﺮ ﮔﻮﺷﯽﻫﺎی ﻫﻮﺷﻤﻨﺪ ﺧﺘﻢ ﻣﯽﺷﻮد ﮐﻪ ﺑﺎ اﺳﺘﻔﺎده از آن ﺑﻪ
راﺣﺘﯽ و ﺑﻪ آﺳﺎﻧﯽ ﻣﯽﺗﻮان ﺑﺮ ﺑﯿﻨﺎﯾﯽ ﮐﺎرﺑﺮان ﻧﻈﺎرت داﺷﺖ.
 

کلیدواژه‌ها


[۱] ﭼﺎﭼﯽ، ج.، ﮐﺎﻇﻤﯽﻓﺮد، ا. و ﻓﻬﯿﻤﯽ، ح.(۱۴۰۰) رﻫﯿﺎﻓﺖ ﺗﺼﻤﯿﻢﮔﯿﺮیﻫﺎی ﭼﻨﺪ ﻣﻌﯿﺎره در ارزﯾﺎﺑﯽ ﻧﯿﮑﻮﯾﯽ ﺑﺮازش ﻣﺪلﻫﺎی آﻣﺎری، ﺳﯿﺴﺘﻢﻫﺎی ﻓﺎزی و ﮐﺎرﺑﺮدﻫﺎ، دوره ۴، ﺷﻤﺎره ١، ص ص ٧۴٢-٧۶٢.
[۲] ﮐﺎﻇﻤﯽﻓﺮد، ا. (۱۳۹۳) ﯾﮏ ﺗﻌﻤﯿﻢ از ﻣﺪل ﺗﺼﻤﯿﻢﮔﯿﺮی ﭼﻨﺪﺷﺎﺧﺼﻪی TOPSIS ﻣﺒﺘﻨﯽ ﺑﺮ ﯾﮑﻨﻮاﺧﺖﺳﺎزی ﻣﻄﻠﻮﺑﯿﺖ ﺷﺎﺧﺺﻫﺎ، ﻣﺠﻠﻪ ﻣﺪﻟﺴﺎزی ﭘﯿﺸﺮﻓﺘﻪ رﯾﺎﺿﯽ، دوره ٠١، ﺷﻤﺎره ١، ص ص ۶٩١-۴١٢.
[۳] ﮐﺎﻇﻤﯽﻓﺮد، ا. و ﺻﺎدﻗﯿﺎن، ر. ﺗﺼﻤﯿﻢﮔﯿﺮیﻫﺎی ﭼﻨﺪ ﻣﻌﯿﺎره، اﻧﺘﺸﺎرات داﻧﺶﭘﺮور،۱۳۹۷.
[4]    Chachi, J., Kazemifard, A., Jalalvand, M. (2021). A multi-attribute assessment of fuzzy regression models, Iranian Journal of Fuzzy Systems, 18, 131-148.
[5]    Dodo, B.I., Li, , Y., Liu, X. (2017). Retinal OCT image segmentation using fuzzy histogram hyperbolization and continuous max-flow و IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS), pp. 745-750.
[6]    Dodo, B.I., Li, , Y., Tucker, A., Liu, X. (2019). Retinal OCT segmentation using fuzzy region competition and level set methods, IEEE 32nd International Sympo- sium on Computer-Based Medical Systems (CBMS), pp. 93-98.
[7]    Fang, L., Cunefare, D., Wang, C., Guymer, R.H., Li, S., Farsiu, S. (2017). Au- tomatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search, Biomedical Optics Express, 8, 2732-2744.
[8]    Garvin, M.K., Abramoff, M.D., Wu, X., Russell, S.R., Burns, T.L., Sonka,
M. (2009). Automated 3-D intraretinal layer segmentation of macular spectral- domain optical coherence tomography images, IEEE Transactions on Medical Imaging, 28, 1436-1447.
[9]    González-López, A., de Moura, J., Novo, J., Ortega, M., Penedo, M.G. (2019). Robust segmentation of retinal layers in optical coherence tomography images based on a multistage active contour model, Heliyon, 5(2), pp 01271.
[10]        Kazemifard, A., Chachi, J. (2021). MADM approach to analyse the per- formance of fuzzy regression models, J. Ambient Intell. Human. Comput. https://doi.org/10.1007/s12652-021-03394-4.
[11]        Kiaee, F., Fahimi, H., Rabbani, H. (2018). Intra-retinal layer segmentation of optical coherence tomography using 3d fully convolutional networks, In 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 2795-2799.
[12]        Lee, K., Niemeijer, M., Garvin, M.K., Kwon, Y.H., Sonka, M., Abramoff, M.D. (2009). Segmentation of the optic disc in 3-D OCT scans of the optic nerve head, IEEE Transactions on Medical Imaging, 29, 159-168.
[13]        Long, J., Shelhamer, E., Darrell, T. (2015). Fully convolutional networks for se- mantic segmentation, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431-3440.
[14]        Lu, D., Heisler, M., Lee, S., Ding, G.W., Navajas, E., Sarunic, M.V., Beg, M.F. (2019). Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network. Medical Image Analysis, 54, 100-110.
[15]        McDonough, K., Kolmanovsky, I., Glybina, I.V. (2015). A neural network ap- proach to retinal layer boundary identification from optical coherence tomography images, In 2015 IEEE Conference on Computational Intelligence in Bioinformat- ics and Computational Biology (CIBCB), pp. 1-8.
[16]        Noh, H., Hong, S., Han, B. (2015). Learning deconvolution network for semantic segmentation, In Proceedings of the IEEE International Conference on Computer Vision (pp. 1520-1528).
[17]        Ronneberger, O., Fischer, P., Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation, In International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234-241, Springer, Cham.
[18]        Roy, A.G., Conjeti, S., Karri, S.P.K., Sheet, D., Katouzian, A., Wachinger, C., Navab, N. (2017). ReLayNet: retinal layer and fluid segmentation of macular opti- cal coherence tomography using fully convolutional networks, Biomedical Optics Express, 8, 3627-3642.
[19]        Sleman, A.A., Soliman, A., Elsharkawy, M., Giridharan, G., Ghazal, M., Sandhu, H., Schaal, S., Keynton, R., Elmaghraby, A., Elseg- mentation approach for extracting retinal layers from optical coherence tomogra- phy images, Medical Physics, 48, 1584-1595.
[20]        H. Soltanizadeha, H., Rezaee Oshterinana, S. (2014). Fully Automated lumen de- tection in intravascular OCT images by using fuzzy system, International Journal of Engineering and Technology sciences 2, 388-389.
[21]        Xu, J., Tolliver, D.A., Ishikawa, H., Wollstein, G., Schuman, J.S. (2009). 3D OCT retinal vessel segmentation based on boosting learning. In World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany (pp. 179-182). Springer, Berlin, Heidelberg.
[22]        Zacks, J.M., Speer, N.K., Swallow, K.M., Maley, C.J. (2010). The brain’s cutting- room floor: Segmentation of narrative cinema, Frontiers in human neuroscience, 4, 168.