تخصیص منابع فازی در سیستم های دومرحله ای

نوع مقاله : مقاله پژوهشی

نویسندگان

داﻧﺸﮑﺪه رﯾﺎﺿﯽ آﻣﺎر و ﻋﻠﻮم ﮐﺎﻣﭙﯿﻮﺗﺮ، داﻧﺸﮕﺎه ﺳﯿﺴﺘﺎن و ﺑﻠﻮﭼﺴﺘﺎن، زاﻫﺪان، اﯾﺮان

10.22034/jfsa.2022.296256.1080

چکیده

ﻋﻤﻮﻣﺎ ﺳﺎزﻣﺎنﻫﺎ و ﻣﻮﺳﺴﺎت دارای ﺑﺨﺶﻫﺎی ﻣﺘﻌﺪد داﺧﻠﯽ ﺑﻮده ﮐﻪ ﻋﻤﻠﮑﺮد ﮐﻠﯽ ﺳﺎزﻣﺎن، ﻧﺘﯿﺠﻪای از ﻋﻤﻠﮑﺮد ﻫﺮﯾﮏ از اﯾﻦ ﺑﺨﺶﻫﺎ ﯾﺎ ﻣﺮاﺣﻞ اﺳﺖ. ﻫﺮ ﺑﺨﺶ، دارای ﻋﻮاﻣﻞ ورودی و ﺧﺮوﺟﯽ ﺧﺎص ﺧﻮد ﻫﻤ ﭽﻨﯿﻦ ﻋﻮاﻣﻞ ارﺗﺒﺎط دﻫﻨﺪه ﺑﯿﻦ ﻣﺮاﺣﻞ اﺳﺖ. ﺷﺎﺧﺺﻫﺎی ﺑﯿﻦ ﻣﺮاﺣﻞ را ﺷﺎﺧﺺﻫﺎی ﻣﯿﺎﻧﯽ ﻣﯽﻧﺎﻣﻨﺪ. در ﯾﮏ ﺳﺎﺧﺘﺎر دوﻣﺮﺣﻠﻪای، ﺷﺎﺧﺺﻫﺎی ﻣﯿﺎﻧﯽ ﺧﺮوﺟﯽﻫﺎی ﻣﺮﺣﻠﻪ اول ﺑﻮده ﮐﻪ ﺑﻪﻋﻨﻮان ورودی ﻣﺮﺣﻠﻪ دوم ﺑﻪﮐﺎر ﻣﯽروﻧﺪ. ارزﯾﺎﺑﯽ ﻋﻤﻠﮑﺮد ﯾﮏ ﺳﺎزﻣﺎن ﺑﺎﯾﺪ ﺑﺎ درﻧﻈﺮ ﮔﺮﻓﺘﻦ ﻋﻤﻠﮑﺮد ﻫﺮﯾﮏ از ﺑﺨﺶﻫﺎی آن ﺗﻌﯿﯿﻦ ﮔﺮدد. ﺗﺤﻠﯿﻞ ﭘﻮﺷﺸﯽ دادهﻫﺎ ﯾﮑﯽ از روﺷﻬﺎی ﻣﻨﺎﺳﺐ ﺑﺮای ارزﯾﺎﺑﯽ ﻋﻤﻠﮑﺮد ﺑﺮاﺳﺎس ﭼﻨﺪ ﺷﺎﺧﺺ اﺳﺖ. در ﻋﻤﻞ ﺗﻌﯿﯿﻦ اﯾﻦ ﺷﺎﺧﺺﻫﺎ ﺑﺎ ﻣﻘﺎدﯾﺮ ﻗﻄﻌﯽ اﻣﮑﺎنﭘﺬﯾﺮ ﻧﻤﯽﺑﺎﺷﺪ. اﯾﻦ ﻣﻘﺎﻟﻪ ﺑﻪ اراﺋﻪ ﻣﺪﻟﯽ ﺟﻬﺖ ﺗﻌﯿﯿﻦ ﻋﻤﻠﮑﺮد ﻣﻮﺳﺴﺎت دوﺑﺨﺸﯽ در ﻣﺤﯿﻂ ﻓﺎزی ﻫﻤﭽﻨﯿﻦ ﺗﺨﺼﯿﺺ ﻣﻨﺎﺑﻊ ﺑﻪ آن ﻣﯽﭘﺮدازد. ﺑﺎ اﺳﺘﻔﺎده از ﺗﺤﻠﯿﻞ ﭘﻮﺷﺸﯽ دادهﻫﺎی ﻣﻌﮑﻮس، ﯾﮏ ﻣﺪل ﺑﺮﻧﺎﻣﻪرﯾﺰی ﭼﻨﺪﻫﺪﻓﻪ ﭘﯿﺸﻨﻬﺎد ﺷﺪه اﺳﺖ ﮐﻪ ﺑﺎ اﻓﺰاﯾﺶ ﺧﺮوﺟﯽﻫﺎی واﺣﺪ ﺗﺤﺖ ارزﯾﺎﺑﯽ، ﻣﯿﺰان اﻓﺰاﯾﺶ ورودیﻫﺎی ﻣﺮﺣﻠﻪ اول و ﻣﯿﺎﻧﯽ را ﺑﻨﺤﻮی ﺗﻌﯿﯿﻦ ﮐﻨﺪ ﮐﻪ ﮐﺎراﯾﯽ آن ﺣﻔﻆ ﺷﻮد. ﺳﭙﺲ ﻣﺪل ﭘﯿﺸﻨﻬﺎدی ﺑﺮای ﺗﺨﺼﯿﺺ ﻣﻨﺎﺑﻊ ﺑﻪ ﺷﻌﺐ ﺑﺎﻧﮏ اﺳﺘﻔﺎده ﺷﺪهاﺳﺖ.

کلیدواژه‌ها


[1]Arya, A., & Yadav, S. P. (2018). Development of FDEA models to measure the performanceefficiencies of dmus. International Journal of Fuzzy Systems, 20,163– 173.
[2]Chen Y, Du J., Sherman H.D., Zhu J. (2010) DEA model with shared resources and efficiency decomposition, European Journal of Operational Research, 207, 339-349.
[3]Chen, Y., Cook W.D., Zhu, J., (2010) Deriving the DEA frontier for two-stage processes,European Journal of Operational Research 202, 138–142
[4]Despotis, D. K., Sotiros, D., and Koronakos, G., (2016) A network DEA approach for series multi-stage processes. Omega, 61, 35-48. 
[5]Ehrgott M. (2005) Multicriteria Optimization. 2nd edition, springer.
[6]Ghiyasi, M. (2015) On inverse DEA model: The case of variable returns to scale, ComputersIndustrial Engineering 87, 407–409.
[7]Kao, C., (2017) Efficiency measurement and frontier projection identification for general two-stage systems in data envelopment analysis, European Journal of Op- erational Research, 261, 679 – 689.
[8]Kao, C, Liu S-T.(2011) Efficiencies of two-stage systems with fuzzy data. Fuzzy Sets and Systems 176, 20–35.
[9]Lertworasirikul S., Charnsethikul P., Fang S.,(2011) Inverse data envelopment analysis model to preserve relative efficiency values: The case of variable returns to scale, Computers & Industrial Engineering 61, 1017–1023
[10]Liang, L., Cook, W., Zhu, J., (2008) DEA models for two-stage processes: Game approach and efficiency decomposition, Naval Research Logistics 55, 643–653.
[11]Payan, A, Noora, A.A, Hosseinzadeh Lotfi, F, Khodabakhshi, A, (2013) Relative Efficiency in Two-Stage DEA and Its Application to Bank Branches, Journal of Basic and Applied Scientific Research, 3(2s) 396-404.
[12]Seiford, L.M., Zhu, J., Profitability and marketability of the top 55 US commer- cial banks,Management Sciences, 45 (1999) 1270-1288
[13]Tavana M., Khalili-Damghani K., Santos Arteaga F., Hosseini A. (2019) A fuzzy multi-objective multi-period network DEA model for efficiency measurement in oil refineries, Computers & Industrial Engineering 135, 143–155
[14]Wang, Y-M., Luo, Y., Liang, L., Fuzzy data envelopment analysis based upon fuzzy arithmetic with an application to performance assessment of manufacturing enterprises, Expert Systems with Applications 36 (2009) 5205–5211.
[15]Wei, Q., Zhang, J., & Zhang, X. (2000). An inverse DEA model for inputs/outputs estimate. European Journal of Operational Research,121(1),151–16.
[16]Zhu, J. (2000) Multi-factor performance measure model with an application to Fortune 500 companies, European Journal of Operational Research 123, 105-124.